APPENDIX

CALCULATION OF FULL ZONE TERM

Following Reitz and Smith⁽²⁾ the energy of the full zone may be calculated by considering the zone to be made up of right tetrahedrons. The contribution to the Fermi energy of each tetrahedron is

$$(W_F^I) = (\mathcal{A}/4\pi^3)(\hbar^2/2m)(pqr/10)[p^2+q^2/2+r^2/6]$$
 (1) where \mathcal{A}_O is the inverse effective mass of the full zone and p , q , and r are the lengths of the mutually othogonal edges of the tetrahedron. The lengths p , q , and r may be expressed in terms of the lattice parameter "a", the (c/a) ratio and the pertinent strain parameter, x , such that

$$p = \frac{2\pi}{a} \quad P \quad (\frac{c}{a}, x)$$

$$q = \frac{2\pi}{a} \quad Q \quad (\frac{c}{a}, x)$$

$$r = \frac{2\pi}{a} \quad R \quad (\frac{c}{a}, x)$$

And equation (1) reduces to

$$(W_F^I) = (\alpha_0 h^2/10 \text{ma}^5) \left[P^2 QR + PQ^2 R/2 + PQR^2/6 \right]$$
 (2)